491,914 views
6 votes
6 votes
how to find principal and annual interest rate if time to double is 11 years and future value after 10 years is 2100?

how to find principal and annual interest rate if time to double is 11 years and future-example-1
User Delphian
by
2.9k points

1 Answer

21 votes
21 votes

Let's begin by listing out the given information:

Amount after 10 years = $2,100

Time to double = 11 years; A = 2P

The formula for compound interest is given by:


\begin{gathered} A=P(1+(r)/(n))^(nt) \\ After\text{ 10 year}s\text{, we have:} \\ A=2,100,n=1(annually),t=10 \\ 2100=P\mleft(1+(r)/(1)\mright)^(1\cdot10) \\ 2100=P(1+r)^(10)-----1 \\ \\ After\text{ 11 year}s\text{, we have:} \\ A=2P,n=1,t=11 \\ 2P=P(1+(r)/(n))^(1\cdot11) \\ 2P=P(1+(r)/(1))^(11) \\ 2P=P(1+r)^(11) \\ \text{Divide both sides by }P\text{:} \\ (2P)/(P)=(P(1+r)^(11))/(P) \\ 2=(1+r)^(11)----2 \\ (1+r)=\sqrt[11]{2} \\ 1+r=1.065 \\ r=1.065-1=0.065 \\ r=0.065=6.5\text{ \%} \\ r=6.5\text{ \%} \\ \\ Substitute\text{ the value of r into equation 1, we have:} \\ 2100=P(1+r)^(10) \\ 2100=P(1+0.065)^(10) \\ P(1+0.065)=\sqrt[10]{2100}\Rightarrow P(1.065)=\sqrt[10]{2100}\Rightarrow P=\frac{\sqrt[10]{2100}}{1.065} \\ P=2.018 \end{gathered}

User Phil Helmer
by
3.0k points