Answer:
The distance from point P, P(-2,4) to the given line y= 2x-2 is 1.56
Explanation:
We need to find the distance from point P to the given line
P(-2,4) , y= 2x-2
The formula used is:
![Distance=(|Ax_1+By_1+C|)/(√(A^2+B^2) )](https://img.qammunity.org/2022/formulas/mathematics/college/sbnsthe9f795o5ynft8lqbh5kpn13mz1cg.png)
Where A, B and C are points of line i.e Ax+By+C=0
and x_1 and y_1 are points of P
So, y=2x-2 in Ax+By+C=0 is:
2x-y-2=0
A=2,
B=-1
C=1
Point given is P(-2,4)
x_1=-2
y_1=4
Putting values and finding distance
![Distance=(|Ax_1+By_1+C|)/(√(A^2+B^2) )\\Distance=(|2(-2)+-1(4)+1|)/(√((-2)^2+(4)^2) )\\Distance=(|-4-4+1|)/(√(4+16) )\\Distance=(|-7|)/(√(20))\\Distance=(7)/(√(20) )\\Distance=(7)/(4.5)\\Distance=1.56](https://img.qammunity.org/2022/formulas/mathematics/college/ri1o6x9yqibo7iixwxqe52omooabnwhyzl.png)
So, the distance from point P, P(-2,4) to the given line y= 2x-2 is 1.56