229k views
22 votes
Solve the inequality. use interval notion to state the solution (x+3)^2>2(x^2+7)

User Emma Tebbs
by
4.7k points

1 Answer

2 votes

Answer:

we conclude that:


x^2+6x+9>2x^2+14\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:1<x<5\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(1,\:5\right)\end{bmatrix}

Hence, (1, 5) is the solution in interval notation.

Please also check the attached graph.

Explanation:

Given the inequality expression


\left(x+3\right)^2>\:2\left(x^2+7\right)

as

(x + 3)² = x² + 6x + 9

2(x² + 7) = 2x² + 14

so


\:x^2+6x+9\:>\:2x^2+14

rewriting in the standard form


-x^2+6x-5>0

Factor -x² + 6x - 5: - (x - 1) (x - 5)


-\left(x-1\right)\left(x-5\right)>0

Multiply both sides by -1 (reverse the inequality)


\left(-\left(x-1\right)\left(x-5\right)\right)\left(-1\right)<0\cdot \left(-1\right)

Simplify


\left(x-1\right)\left(x-5\right)<0

so


1<x<5

Therefore, we conclude that:


x^2+6x+9>2x^2+14\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:1<x<5\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(1,\:5\right)\end{bmatrix}

Hence, (1, 5) is the solution in interval notation.

Please also check the attached graph.

Solve the inequality. use interval notion to state the solution (x+3)^2>2(x^2+7)-example-1
User Robroc
by
4.0k points