Answer:
we conclude that:
![x^2+6x+9>2x^2+14\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:1<x<5\:\\ \:\mathrm{Interval\:Notation:}&\:\left(1,\:5\right)\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/high-school/t4sav9v0pmfdmmo8nelhxq0mhjhaeibqlc.png)
Hence, (1, 5) is the solution in interval notation.
Please also check the attached graph.
Explanation:
Given the inequality expression
![\left(x+3\right)^2>\:2\left(x^2+7\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/rhuubma8ga1fmek0k7lbbt6gsgravhr9t4.png)
as
(x + 3)² = x² + 6x + 9
2(x² + 7) = 2x² + 14
so
![\:x^2+6x+9\:>\:2x^2+14](https://img.qammunity.org/2022/formulas/mathematics/high-school/vaumuodhmtvkhgc06s5el3gg2t1pos1720.png)
rewriting in the standard form
![-x^2+6x-5>0](https://img.qammunity.org/2022/formulas/mathematics/high-school/4bl85yjon7s72p5xs0th7xit3h01z2p96s.png)
Factor -x² + 6x - 5: - (x - 1) (x - 5)
![-\left(x-1\right)\left(x-5\right)>0](https://img.qammunity.org/2022/formulas/mathematics/high-school/pflkq2v0fl8nc0m7vaic942a1or9m936lc.png)
Multiply both sides by -1 (reverse the inequality)
![\left(-\left(x-1\right)\left(x-5\right)\right)\left(-1\right)<0\cdot \left(-1\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/lwx17cxqvlxw4zte4x8nn7yjumwz8glaz9.png)
Simplify
![\left(x-1\right)\left(x-5\right)<0](https://img.qammunity.org/2022/formulas/mathematics/high-school/pxwgfji8clxlv7dm4kept970us4u84hqi8.png)
so
![1<x<5](https://img.qammunity.org/2022/formulas/mathematics/high-school/28kr2jfszvbbv7i4dxq86l0mjhzvr0jegm.png)
Therefore, we conclude that:
![x^2+6x+9>2x^2+14\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:1<x<5\:\\ \:\mathrm{Interval\:Notation:}&\:\left(1,\:5\right)\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/high-school/t4sav9v0pmfdmmo8nelhxq0mhjhaeibqlc.png)
Hence, (1, 5) is the solution in interval notation.
Please also check the attached graph.