136,094 views
41 votes
41 votes
#3 Choose the rule that represents a series of transformations

#3 Choose the rule that represents a series of transformations-example-1
User Jamie White
by
2.6k points

1 Answer

9 votes
9 votes

Step 1, write the coordinates of the vertices of the triangle GDI


\begin{gathered} G\Rightarrow(2,-4) \\ D\Rightarrow(4,-1) \\ I\Rightarrow(5,-5) \end{gathered}

Step 2: Write the coordinates of the vertices of the image G'D'I'


\begin{gathered} G^(\prime)\Rightarrow(-5,6) \\ D^(\prime)\Rightarrow(-3,3) \\ I^(\prime)\Rightarrow(-2,7) \end{gathered}

Step 3: Observe the difference in the x-coordinates to obtain the first rule of the transformation


\begin{gathered} G^(\prime)-G\Rightarrow(-5-2)\Rightarrow-7 \\ D^(\prime)-D\Rightarrow(-3-4)\Rightarrow-7 \\ I^(\prime)-I\Rightarrow(-2-5)\Rightarrow-7 \\ \text{Thus,} \\ \text{The first order is } \\ (x-7,y) \end{gathered}

Step 4: Reflect the resulting image over the x-axis


\begin{gathered} (-5,-4)\Rightarrow(-5,4) \\ (-3,-1)\Rightarrow(-3,1) \\ (-2,-5)\Rightarrow(-2,5) \\ \text{The rule becomes } \\ (x-7,-y) \end{gathered}

Step 5: Translate the resulting image vertically upward by 2 units


\begin{gathered} (-5,4+2)\Rightarrow(-5,6) \\ (-3,1+2)\Rightarrow(-3,3) \\ (-2,5+2)\Rightarrow(-2,7) \\ \text{The rule after this sequence is} \\ (x-7,-y+2) \end{gathered}

Hence, the rule that represents a series of transformations is given below


(x,y)\Rightarrow(x-7,-y+2)

User Tkincher
by
2.8k points