Answer:
The geometric series is
![8,(8)/(3) ,(8)/(9),(8)/(27),(8)/(81)](https://img.qammunity.org/2022/formulas/mathematics/high-school/rcdobsjg2gud8f4e1wbqbosywntxepi2vx.png)
The sum of the geometric series is 12.06
Explanation:
First term of geometric series = 8
Common Ratio = 1/3
The formula used to find next term is:
![a_n=a_1r^(n-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/kr8cbyqho339cb55ekaxqcl5jbld5yjucq.png)
Our series has five terms, so we need to find 2nd, 3rd, 4th and 5th term
2nd term is:
![a_n=a_1r^(n-1)\\a_2=8((1)/(3))^(2-1)\\a_2=8((1)/(3))^(1)\\a_2=(8)/(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/w4aa1cm7ll0r2335rxlr9k5q46ywsbyazy.png)
3rd term is:
![a_n=a_1r^(n-1)\\a_3=8((1)/(3))^(3-1)\\a_3=8((1)/(3))^(2)\\a_3=(8)/(9)](https://img.qammunity.org/2022/formulas/mathematics/high-school/8thotxobqihnryc4n0z2o1p373jghclhks.png)
4th term is:
![a_n=a_1r^(n-1)\\a_4=8((1)/(3))^(4-1)\\a_4=8((1)/(3))^(3)\\a_4=(8)/(27)](https://img.qammunity.org/2022/formulas/mathematics/high-school/aer4f8oq6jrreiurfumib822n1vwpo7c1q.png)
5th term is:
![a_n=a_1r^(n-1)\\a_5=8((1)/(3))^(5-1)\\a_5=8((1)/(3))^(4)\\a_2=(8)/(81)](https://img.qammunity.org/2022/formulas/mathematics/high-school/98556zl86dvno5kloa5mut1lu3x3nhm5ie.png)
So, The geometric series is
![8,(8)/(3) ,(8)/(9),(8)/(27),(8)/(81)](https://img.qammunity.org/2022/formulas/mathematics/high-school/rcdobsjg2gud8f4e1wbqbosywntxepi2vx.png)
Now, Finding the sum of geometric series
The formula used is:
![S_n=(1-r^n)/(1-r)](https://img.qammunity.org/2022/formulas/mathematics/high-school/9n7ejzxt58gep8svzphyuos566x6gmthc5.png)
We have n =5, r=1/3
![S_n=(a(1-r^n))/(1-r)\\S_5=(8(1-(1)/(3)^5))/(1-(1)/(3) )\\S_5=(8(1-(1)/(243)))/(1-(1)/(3) )\\S_5=(8((243-1)/(243)))/((3-1)/(3) )\\S_5=(8((242)/(243)))/((2)/(3) )\\S_5=(8(0.995))/(0.66)\\S_5=12.06](https://img.qammunity.org/2022/formulas/mathematics/high-school/9nvd2gl1jyrlyyds3qh48f57x32604vp74.png)
So, The sum of the geometric series is 12.06