177k views
4 votes
What are the exact solutions of x2 - 3x - 1 = 0?

2 Answers

6 votes

x^2-3x-1=0\\a=1;\ b=-3;\ c=-1\\\\\Delta=b^2-4ac\\\Delta=(-3)^2-4\cdot1\cdot(-1)=9+4=13 \ \textgreater \ 0\\\\x_1=(-b-\sqrt\Delta)/(2a)\ and\ x_2=(-b+\sqrt\Delta)/(2a)\\\\\sqrt\Delta=√(13)\\\\x_1=(-(-3)-√(13))/(2\cdot1)=(3-√(13))/(2)\\\\x_2=(-(-3)+√(13))/(2\cdot1)=(3+√(13))/(2)
User ArdentLearner
by
8.5k points
0 votes

Answer:


x_(1)=(-3+√(13) )/(2)\\


x_(2)=(-3-√(13) )/(2)\\

Explanation:

the equation is:
x^2-3x-1=0

you have a quadratic equation of the form:


ax^2+bx+c=0

where
a=1,b=-3,c=-1

this can be solved using the general formula:


x=(-b+-√(b^2-4ac) )/(2a)

substituting all the known values:


x=(-(-3)+-√((-3)^2-4(1)(-1)) )/(2(1)) \\x=(-3+-√(9+4) )/(2)\\ x=(-3+-√(13) )/(2)\\

one value for x will be found using the plus sign before the square root:


x_(1)=(-3+√(13) )/(2)\\

and the other will be found using the negative sign before the square root:


x_(2)=(-3-√(13) )/(2)\\

User Jimit Patel
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories