216k views
2 votes
Solve x2 – 4x – 9 = 29 for x.

User Shadowxvii
by
7.4k points

2 Answers

3 votes

Answer:

The two root of the given quadratic equation
x^2-4x-9=29 is 8.48 and -4.48 .

Explanation:

Consider, the given Quadratic equation,
x^2-4x-9=29

Thus on simplification, we get,


x^2-4x-9-29=0 \Rightarrow x^2-4x-38=0

We can solve using quadratic formula,

For a given quadratic equation
ax^2+bx+c=0 we can find roots using,


x=(-b\pm√(b^2-4ac))/(2a) ...........(1)

Where,
√(b^2-4ac) is the discriminant.

Here, a = 1 , b = -4 , c = -38

Substitute in (1) , we get,


x=(-b\pm√(b^2-4ac))/(2a)


\Rightarrow x=(-(-4)\pm√((-4)^2-4\cdot 1 \cdot (-38)))/(2 \cdot 1)


\Rightarrow x=(4\pm√(168))/(2)


\Rightarrow x_1=(4+√(168))/(2) and \Rightarrow x_2=(4-√(168))/(2)

Also,
√(168)=12.96(approx)


\Rightarrow x_1=(16.96)/(2) and \Rightarrow x_2=(-8.96)/(2)


\Rightarrow x_1=8.48 and \Rightarrow x_2=-4.48

Thus, the two root of the given quadratic equation
x^2-4x-9=29 is 8.48 and -4.48 .


User Fran Marzoa
by
9.0k points
1 vote

x^2 - 4x - 9 = 29 \\ x^2 - 4x - 9 - 29 = 0 \\ x^2 - 4x - 38 = 0 \\ x= \frac{-b \pm \sqrt{ b^(2) -4ac} }{2a}; where a = 1, b = -4 and c = -38

x= \frac{-(-4) \pm \sqrt{ (-4)^(2) -4 * 1 * -38} }{2 * 1} \\ = (4 \pm √( 16 +152) )/(2) \\ =(4 \pm √( 168) )/(2) \\ =(4 \pm 2√(42) )/(2) \\ =2+√(42) \ or \ 2-√(42)\\=8.48 \ or \ -4.48







User Xhan
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories