85.8k views
2 votes
Solve 3^(2x) = 7^(x-1) −7.74293 7.74293 −1 1

2 Answers

2 votes
Hello,

3^(2x)=7^(x-1)
==>2x ln 3 = (x-1)ln 7
==>x(2ln 3 -ln 7)=-ln 7
==>x=-ln 7 /(2 ln 3-ln 7)
==>x=-7,7429304889740634853601918674823...

Answer A

User Pmdarrow
by
7.4k points
4 votes

Answer:

Option (a) is correct.


x=-7.74293

Explanation:

Given :
\:3^(\left(2x\right))\:=\:7^(\left(x-1\right))

We have to solve the given expression
\:3^(\left(2x\right))\:=\:7^(\left(x-1\right))

Consider the given expression,
\:3^(\left(2x\right))\:=\:7^(\left(x-1\right))

Using,
\mathrm{If\:}f\left(x\right)=g\left(x\right)\mathrm{,\:then\:}\ln \left(f\left(x\right)\right)=\ln \left(g\left(x\right)\right) , we have,


\ln \left(3^(2x)\right)=\ln \left(7^(x-1)\right)

Apply log rule,


\quad \log _a\left(x^b\right)=b\cdot \log _a\left(x\right)

We have,


\ln \left(3^(2x)\right)=2x\ln \left(3\right),\:\space\ln \left(7^(x-1)\right)=\left(x-1\right)\ln \left(7\right)

substitute, we get,


2x\ln \left(3\right)=\left(x-1\right)\ln \left(7\right)


\mathrm{Expand\:}\left(x-1\right)\ln \left(7\right):\quad \ln \left(7\right)x-\ln \left(7\right)

Subtract
\ln \left(7\right)x from both side, we have,


2x\ln \left(3\right)-\ln \left(7\right)x=\ln \left(7\right)x-\ln \left(7\right)-\ln \left(7\right)x

Simplify, we have,


2x\ln \left(3\right)-\ln \left(7\right)x=-\ln \left(7\right)

Taking x common from both term , we have,


x\left(2\ln \left(3\right)-\ln \left(7\right)\right)

Divide both side by
2\ln \left(3\right)-\ln \left(7\right) , we have,


(\left(2\ln \left(3\right)-\ln \left(7\right)\right)x)/(2\ln \left(3\right)-\ln \left(7\right))=(-\ln \left(7\right))/(2\ln \left(3\right)-\ln \left(7\right))

On simplify , we get,


x=-(\ln \left(7\right))/(\ln \left((9)/(7)\right))

Thus,
x=-7.74293.....

Thus, option (a) is correct.

User Jiyosub
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories