85.8k views
2 votes
Solve 3^(2x) = 7^(x-1) −7.74293 7.74293 −1 1

2 Answers

2 votes
Hello,

3^(2x)=7^(x-1)
==>2x ln 3 = (x-1)ln 7
==>x(2ln 3 -ln 7)=-ln 7
==>x=-ln 7 /(2 ln 3-ln 7)
==>x=-7,7429304889740634853601918674823...

Answer A

User Pmdarrow
by
7.4k points
4 votes

Answer:

Option (a) is correct.


x=-7.74293

Explanation:

Given :
\:3^(\left(2x\right))\:=\:7^(\left(x-1\right))

We have to solve the given expression
\:3^(\left(2x\right))\:=\:7^(\left(x-1\right))

Consider the given expression,
\:3^(\left(2x\right))\:=\:7^(\left(x-1\right))

Using,
\mathrm{If\:}f\left(x\right)=g\left(x\right)\mathrm{,\:then\:}\ln \left(f\left(x\right)\right)=\ln \left(g\left(x\right)\right) , we have,


\ln \left(3^(2x)\right)=\ln \left(7^(x-1)\right)

Apply log rule,


\quad \log _a\left(x^b\right)=b\cdot \log _a\left(x\right)

We have,


\ln \left(3^(2x)\right)=2x\ln \left(3\right),\:\space\ln \left(7^(x-1)\right)=\left(x-1\right)\ln \left(7\right)

substitute, we get,


2x\ln \left(3\right)=\left(x-1\right)\ln \left(7\right)


\mathrm{Expand\:}\left(x-1\right)\ln \left(7\right):\quad \ln \left(7\right)x-\ln \left(7\right)

Subtract
\ln \left(7\right)x from both side, we have,


2x\ln \left(3\right)-\ln \left(7\right)x=\ln \left(7\right)x-\ln \left(7\right)-\ln \left(7\right)x

Simplify, we have,


2x\ln \left(3\right)-\ln \left(7\right)x=-\ln \left(7\right)

Taking x common from both term , we have,


x\left(2\ln \left(3\right)-\ln \left(7\right)\right)

Divide both side by
2\ln \left(3\right)-\ln \left(7\right) , we have,


(\left(2\ln \left(3\right)-\ln \left(7\right)\right)x)/(2\ln \left(3\right)-\ln \left(7\right))=(-\ln \left(7\right))/(2\ln \left(3\right)-\ln \left(7\right))

On simplify , we get,


x=-(\ln \left(7\right))/(\ln \left((9)/(7)\right))

Thus,
x=-7.74293.....

Thus, option (a) is correct.

User Jiyosub
by
7.9k points