83.9k views
5 votes
Can somebody solve this out? Identify Two additional vValues for x and y in a direct variation relationship where y=11 when x=8.

User Sanchit
by
8.3k points

2 Answers

5 votes
Direct variation: y=kx
Ask ourselves: what is k in this particular relationship? Substitute:
y=kx
11=8k
k=8/11

Two additional values for x and y; we can just throw in random numbers for x and see what y becomes. I'm going to use 11 and 22.

y = (8/11)x
y = (8/11)11
y = 8
(11,8)

y = (8/11)x
y = (8/11)22
y = (8/11)2*11
y = 8*2
y = 16
(22,16)



User Simple Fellow
by
6.8k points
7 votes
You can multiply both values, x and y by the same value and it still holds true.
y=22 when x=16
y=44 when x=32
y=55 when x=40
User Phlume
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories