102,892 views
27 votes
27 votes
Solve In (x2 + 4) – 2ln (x) = 1 for the variable x-

User Steve Jackson
by
2.2k points

1 Answer

14 votes
14 votes

Answer::


x=(2)/(√(e-1))\text{ or }x=-\frac{2}{\sqrt[]{e-1}}

Step-by-step explanation:

Given the equation:


\ln (x^2+4)-2\ln (x)=1

First, we can make the number 2 an index:


ln(x^2+4)-\ln (x^2)=1

Apply the division law of logarithm to combine the left-hand side:


\ln ((x^2+4)/(x^2))=1

Take the exponent of both sides:


\begin{gathered} e^{\ln ((x^2+4)/(x^2))}=e^1 \\ (x^2+4)/(x^2)=e \\ x^2+4=ex^2 \end{gathered}

Solve the equation above for x:


\begin{gathered} ex^2-x^2=4 \\ x^2(e-1)=4 \\ x^2=(4)/(e-1) \\ x=\pm\sqrt[]{(4)/(e-1)} \\ x=\pm\frac{2}{\sqrt[]{e-1}} \end{gathered}

The values of the variable x are:


x=(2)/(√(e-1))\text{ or }x=-\frac{2}{\sqrt[]{e-1}}

User Vagner Rodrigues
by
3.3k points