14.7k views
5 votes
What is the product? (3x-6) (2x^2 -7x+1)

User Psybrg
by
7.1k points

2 Answers

6 votes
(3x - 6)(2x² - 7x + 1)
3x(2x² - 7x + 1) - 6(2x² - 7x + 1)
3x(2x²) - 3x(7x) + 3x(1) - 6(2x²) + 6(7x) - 6(1)
6x³ - 21x² + 3x - 12x² + 42x - 6
6x³ - 21x² - 12x² + 3x + 42x - 6
6x³ - 33x² + 45x - 6
User Cynod
by
7.9k points
1 vote

Answer-


\left(3x-6\right)\left(2x^2-7x+1\right)=6x^3-33x^2+45x-6

Solution-

Given the two polynomials are
3x-6, 2x^2 -7x+1

So their product will be,


=\left(3x-6\right)\left(2x^2-7x+1\right)

Distributing the Parentheses,


=3x\cdot \:2x^2+3x\left(-7x\right)+3x\cdot \:1+\left(-6\right)\cdot \:2x^2+\left(-6\right)\left(-7x\right)+\left(-6\right)\cdot \:1

Applying minus-plus rules,


=3\cdot \:2x^2x-3\cdot \:7xx+3\cdot \:1\cdot \:x-6\cdot \:2x^2+6\cdot \:7x-6\cdot \:1

Simplifying further,


=6x^3-33x^2+45x-6

User Rzymek
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories