200k views
0 votes
Find the sum of the summation of 3 i minus 15, from i equals 2 to 7.

User DimanNe
by
6.7k points

2 Answers

3 votes

Answer:


\sum _(i=2)^73i-15=-9

Explanation:

Given :
\sum _(i=2)^73i-15

We have to evaluate the given summation.

Consider
\sum _(i=2)^73i-15

using, we have,


\sum _(k=m)^n\:=\:\sum _(k=1)^n\:-\:\sum _(k=1)^(m-1)


=\sum _(i=1)^73i-15-\sum _(i=1)^13i-15 ..............(1)

Consider,
\sum _(i=1)^73i-15

Apply sum rule,


\quad \sum a_n+b_n=\sum a_n+\sum b_n , we have,


=\sum _(i=1)^73i-\sum _(i=1)^715

Now, first consider,
\sum _(i=1)^73i

Apply constant multiplication rule,
\quad \sum c\cdot a_n=c\cdot \sum a_n we have,


=3\cdot \sum \:_(i=1)^7i


=3\cdot \:28\\\\=84

Also,
\sum _(i=1)^715=105

Thus,
\sum _(i=1)^73i-15=84-105=-21

Similarly,
\sum _(i=1)^13i-15=-12

Substitute in (1) , we have,

Thus,
\sum _(i=2)^73i-15=-21-(-12)=-21+12=-9

Thus,
\sum _(i=2)^73i-15=-9

User Giacomo De Bacco
by
8.3k points
1 vote
The summation symbol means we use the variable i in the equation from the given range. In this case, we are given with the equation 3 i - 15 and i ranges from 2 to 7. The summation using simply the calculator is equal to -9. The answer to this problem is -9.
User Jan Krynauw
by
7.6k points