24.1k views
3 votes
Evaluate the integral of arctan(1/x)

User Albfan
by
8.4k points

1 Answer

4 votes
We will use substitution for the partial integration:
u=arc tan ( (1)/(x)), dv = dx \\ du= (-dx)/((1+ x^(2)) x^(2) ) , v=x
The integral becomes:=
x arc tan x- \int {x (-dx)/((1+ x^(2)) x^(2) ) } \, dx = \\ =x arc tan x+ \int { (dx)/((1+ x^(2) )x) } \, dx
2nd integration:
we will add and subtract x^2 to the numerator:
\int { (1+ x^(2) - x^(2) )/((1+ x^(2) )x) } \, dx= \\ \int { (1)/(x) } \, dx- \int { (x)/(1+ x^(2) ) } \, dx = \\ ln(x) - \int { (x)/(1+ x^(2) ) } \, dx
u-substitution:
u=1+ x^(2) , du=2xdx, xdx= (du)/(2)
...=
ln(x)- (1)/(2) \int { (1)/(u) } \, du=ln(x)- (1)/(2) ln(u)= \\ ln(x)-ln( \sqrt{1+ x^(2) )} =ln \frac{x}{ \sqrt{1+ x^(2) } }
Finally:...=
xarctan( (1)/(x))+ln( \frac{x}{ \sqrt{1+ x^(2) } })+C
User Coarist
by
8.6k points

Related questions