20.9k views
22 votes
How many liters of water are needed to prepare a 1.67M solution of Ba(OH)2 if you need to dissolve 235g of it?

2 Answers

7 votes

Answer: 2.04

Step-by-step explanation:

User Stephanie
by
3.5k points
12 votes

Answer:

Approximately
0.821\; \rm mol.

Step-by-step explanation:

Look up the relative atomic mass of
\rm Ba,
\rm O, and
\rm H on a modern periodic table:


  • \rm Ba:
    137.327.

  • \rm O:
    15.999.

  • \rm H:
    1.008.

Calculate the formula mass of
{\rm Ba(OH)_2}:


\begin{aligned}& M({\rm Ba(OH)_2}) \\ &= 137.327 + 2*(15.999 + 1.008) \\ &\approx 171.334\; \rm g \cdot mol^(-1)\end{aligned}.

Calculate the number of moles of
{\rm Ba(OH)_2} formula units in that
235\; \rm g of this compound:


\begin{aligned}& n({\rm Ba(OH)_2}) \\ &= \frac{m({\rm Ba(OH)_2})}{M({\rm Ba(OH)_2})} \\ &= (235\; \rm g)/(171.334\; \rm g \cdot mol^(-1)) \approx 1.37159\; \rm mol \end{aligned}.

Calculate the volume of a
c({\rm Ba(OH)_2}) = 1.67\; \rm mol \cdot L^(-1) with approximately
n({\rm Ba(OH)_2}) = 1.37159\; \rm mol of the solute:


\begin{aligned}& V({\rm Ba(OH)_2}) \\ &= \frac{n({\rm Ba(OH)_2})}{c({\rm Ba(OH)_2})} \\ &= (1.37159\; \rm mol)/(1.67\; \rm mol \cdot L^(-1)) \approx 0.821\; \rm L \end{aligned}.

User Anchit Pancholi
by
3.2k points