25.5k views
16 votes
Find the minimum value of the function f(x)=x^2+5x-6

1 Answer

6 votes

Step-by-step explanation

  • Method 1 (Formula)


\begin{cases}h = - (b)/(2a) \\ k = \frac{4ac - {b}^(2) }{2a} \end{cases}

The vertex of Parabola is the maximum/minimum point depending on the value of a.

  • Find Vertex

h-value


h = - (5)/(2(1)) \\ h = - (5)/(2)

k-value


k = \frac{4(1)( - 6) - {(5)}^(2) }{4(1)} \\ k = ( - 24 - 25)/(4) \\ k = ( - 49)/(4) \\ k = - (49)/(4)

The minimum value is the value of k. Therefore the minimum value is - 49/4 at x = -5/2.

  • Method 2 (Derivative)

This is Calculus method. We simply differentiate the function then substitute y' = 0.

  • Differentiate Function


f'(x) = 2 {x}^(2 - 1) + {5x}^(1 - 1) - 0 \\ f'(x) = 2x + 5

Substitute f'(x) = 0


0 = 2x + 5 \\ - 5 = 2x \\ - (5)/(2) = x

Substitute x = -5/2 in the original equation.


f(x) = {( - (5)/(2) )}^(2) + 5( - (5)/(2) ) - 6 \\ f(x) = (25)/(4) - (25)/(2) - 6 \\ f(x) = (25)/(4) - (50)/(4) - (24)/(4) \\ f(x) = (25)/(4) - (74)/(4) \\ f(x) = - (49)/(4)

Answer


\sf{the \: \: minimum \: \: value \: \: is \: \: - (49)/(4) \: \: at \: \: x = - (5)/(2) }

User Swingline Rage
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories