47.9k views
3 votes
Rewrite with only sin x and cos x.

sin 3x

1 Answer

2 votes

\bf sin({{ \alpha}} + {{ \beta}})=sin({{ \alpha}})cos({{ \beta}}) + cos({{ \alpha}})sin({{ \beta}}) \\\\\\ sin(2\theta)=2sin(\theta)cos(\theta) \\ \quad \\ cos(2\theta)= \begin{cases} \boxed{cos^2(\theta)-sin^2(\theta)}\\ 1-2sin^2(\theta)\\ 2cos^2(\theta)-1 \end{cases}\\\\ -------------------------------\\\\ sin(3x)\implies sin(2x+x)\implies sin(2x)cos(x)+cos(2x)sin(x)


\bf 2sin(x)cos(x)cos(x)~+~[cos^2(x)-sin^2(x)]sin(x) \\\\\\ \stackrel{like~terms}{\stackrel{\downarrow }{2sin(x)cos^2(x)}~~+~~\stackrel{\downarrow }{sin(x)cos^2(x)}}-sin^3(x) \\\\\\ 3sin(x)cos^2(x)-sin^3(x)
User Sootah
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories