212k views
2 votes
How do you do this I don't understand and the other websites are not helping

How do you do this I don't understand and the other websites are not helping-example-1
User Marco RS
by
8.4k points

1 Answer

2 votes

\bf \textit{Logarithm of rationals}\\\\ log_{{ a}}\left( (x)/(y)\right)\implies log_{{ a}}(x)-log_{{ a}}(y) \\\\\\ \textit{Logarithm of exponentials}\\\\ log_{{ a}}\left( x^{{ b}} \right)\implies {{ b}}\cdot log_{{ a}}(x)\\\\\\ \textit{also recall that }\qquad a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^( n)} \qquad \textit{and that }\qquad log_x(x)=1\\\\ -------------------------------\\\\


\bf log_5\left( \cfrac{125}{√(x+6)} \right)\qquad \begin{cases} 125=5^3\\\\ √(x+6)=(x+6)^{(1)/(2)} \end{cases}\implies log_5\left[ \cfrac{5^3}{(x+6)^{(1)/(2)}} \right] \\\\\\ log_5(5^3)-log_5\left[ (x+6)^{(1)/(2)} \right]\implies 3log_5(5)-\cfrac{1}{2}log_5(x+6) \\\\\\ 3(1)-\cfrac{1}{2}log_5(x+6)\implies 3-\cfrac{log_5(x+6)}{2}
User Sctajc
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories