Answer:
π
Explanation:
Solve for x on the interval [0, 2pi]
Given the equation
Sinx = cosx + 1
Square both sides of the equation
Sin²x = (cos x + 1)²
Sin²x = cos²x + 2cos x + 1
Since Sin²x = 1 - cos²x
1 - cos²x = cos²x + 2cos x + 1
Collect like terms
1-1-cos²x-cos²x-2cos x = 0
-2cos²x-2cos x = 0
-2cos²x = 2cos x
-cosx = 1
cos x = -1
x = arccos -1
x = 180 degrees
Hence the value of x = π