271,196 views
33 votes
33 votes
A jet travels 5008 miles against a jetstream in 8 hours and 5968 miles with the jetstream in the same amount of time. What is the rate of the jet in still air andwhat the rate of the jetstream?

User Bajju
by
3.3k points

1 Answer

25 votes
25 votes

Let's use the variable x to represent the jet speed and y to represent the jetstream speed.

If the jet travels 5008 miles in 8 hours against the jetstream (that is, a relative speed of x - y), we can write the equation:


\begin{gathered} \text{distance}=\text{speed}\cdot\text{time} \\ 5008=(x-y)\cdot8 \\ x-y=626 \end{gathered}

Then, if the jet travels 5968 miles in 8 hours with the jetstream (relative speed of x + y), so we have:


\begin{gathered} 5968=(x+y)\cdot8 \\ x+y=746 \end{gathered}

Adding the equations we found, we can find the value of x:


\begin{gathered} x-y+(x+y)=626+746 \\ x-y+x+y=1372 \\ 2x=1372 \\ x=(1372)/(2) \\ x=686 \\ \\ x-y=626 \\ 686-y=626 \\ y=686-626=60 \end{gathered}

So the jet speed is 686 mph and the jetstream speed is 60 mph.

User Adam Jacob Muller
by
2.5k points