188k views
1 vote
Solve the following system of equations by substitution and select the correct answer below: 6x − 4y = 36 2x − 8y = 32 A. x=4, y=3 B. x=4, y=-3 C. x=-4, y=3 D. x=-4, y=-3

1 Answer

5 votes
Via subsitution we want to isolate x for 6x - 4y = 36
Start by adding 4y to both sides.

6x-4y+4y=36+4y \ \textgreater \ Simplify \ \textgreater \ 6x=36+4y
Now divide both sides by 6

(6x)/(6)=(36)/(6)+(4y)/(6).
Now simplify further.

(6x)/(6) = (6)/(6) = 1 = x
Apply the rule of
(a)/(c)\pm (b)/(c)=(a\pm \:b)/(c) to
(36)/(6)+(4y)/(6)
When applied >
(36+4y)/(6) > Now factor 36 + 4y > Rewrite it as....

4\cdot \:9+4y > Factor out the common term of 4 >
4\left(y+9\right)
This gives us
(4\left(y+9\right))/(6)
From there we want to cancel the common factor of 2 which gives us...

(2\left(y+9\right))/(3)
Now you want to
\mathrm{Subsititute\:}x=(2\left(y+9\right))/(3) \ \textgreater \ \begin{bmatrix}2\cdot (2\left(y+9\right))/(3)-8y=32\end{bmatrix}

2\cdot (2\left(y+9\right))/(3) \ \textgreater \ \mathrm{Multiply\:fractions}:\quad \:a\cdot (b)/(c)=(a\:\cdot \:b)/(c) \ \textgreater \ (2\left(y+9\right) \cdot \:2)/(3)

\mathrm{Multiply\:the\:numbers:}\:2\cdot \:2=4
This gives us
(4\left(y+9\right))/(3)
So now we have
(4\left(y+9\right))/(3)-8y=32
We want to multiply both sides by 3.

(4\left(y+9\right))/(3)\cdot \:3-8y\cdot \:3=32\cdot \:3
Refine it.

4\left(y+9\right)-24y=96
Expand
4\left(y+9\right)

\mathrm{Distribute\:parentheses\:using}:\quad \:a\left(b+c\right)=ab+ac
Where
a=4,\:b=y,\:c=9

4\cdot \:y+4\cdot \:9 \ \textgreater \ \mathrm{Multiply\:the\:numbers:}\:4\cdot \:9=36 \ \textgreater \ 4y +36
So now we have
4y+36-24y
Group the like terms.

4y-24y+36 \ \textgreater \ \mathrm{Add\:similar\:elements:}\:4y-24y=-20y \ \textgreater \ -20y+36

-20y+36=96 \ \textgreater \ \mathrm{Subtract\:}36\mathrm{\:from\:both\:sides}

-20y+36-36=96-36 \ \textgreater \ Simplify \ \textgreater \ -20y=60 \ \textgreater \
Now we want to
\mathrm{Divide\:both\:sides\:by\:}-20 \ \textgreater \ (-20y)/(-20)=(60)/(-20) \ \textgreater \ y=-3

\mathrm{For\:}x=(2\left(y+9\right))/(3) \ \textgreater \ \mathrm{Subsititute\:}y=-3 \ \textgreater \ x=(2\left(-3+9\right))/(3)\quad \Rightarrow \quad x=4
Therefore our final solutions are, y = -3, x =4.
Hope this helps!

User Khalid Dabjan
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories