183k views
4 votes
How does the graph of f(x) =-3^2x-4 differ from the graph of g(x)=-3^2x

1 Answer

7 votes

\bf ~~~~~~~~~~~~\textit{function transformations} \\\\\\ % templates f(x)={{ A}}({{ B}}x+{{ C}})+{{ D}} \\\\ ~~~~y={{ A}}({{ B}}x+{{ C}})+{{ D}} \\\\ f(x)={{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}} \\\\ f(x)={{ A}}(\mathbb{R})^{{{ B}}x+{{ C}}}+{{ D}} \\\\ f(x)={{ A}} sin\left({{ B }}x+{{ C}} \right)+{{ D}} \\\\ --------------------


\bf \bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }{{ B}}\textit{ is negative}\\ ~~~~~~\textit{reflection over the y-axis}


\bf \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ ~~~~~~if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\ \bullet \textit{ vertical shift by }{{ D}}\\ ~~~~~~if\ {{ D}}\textit{ is negative, downwards}\\\\ ~~~~~~if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }\frac{2\pi }{{{ B}}}

with that template in mind, let's check,


\bf f(x)=-3^{\stackrel{B}{2}x\stackrel{C}{-4}}\qquad \qquad g(x)=-3^(2x)\implies g(x)=-3^{\stackrel{B}{2}x\stackrel{C}{+0}}

notice, g(x) has a horizontal shift of C/B or +0/2, or just 0, none.

while f(x) has a horizontal shift of C/B or -4/2, or -2, to the right.

so f(x) is really just g(x), but shifted horizontally over 2 units to the right.
User Moiz Irshad
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories