24.5k views
9 votes
Help.
Please its urgent show workings.


Help. Please its urgent show workings. ​-example-1

1 Answer

10 votes

Answer:

see explanation

Explanation:

There are 2 possible approaches to differentiating these.

Expand the factors and differentiate term by term, or

Use the product rule for differentiation.

I feel they are looking for use of product rule.

Given

y = f(x). g(x) , then


(dy)/(dx) = f(x).g'(x) + g(x).f'(x) ← product rule

(a)

y = (2x - 1)(x + 4)²

f(x) = 2x - 1 ⇒ f'(x) = 2

g(x) = (x + 4)²

g'(x) = 2(x + 4) ×
(d)/(dx) (x + 4) ← chain rule

= 2(x + 4) × 1

= 2(x + 4)

Then


(dy)/(dx) = (2x - 1). 2(x + 4) + (x + 4)². 2

= 2(2x - 1)(x + 4) + 2(x + 4)² ← factor out 2(x + 4) from each term

= 2(x + 4) (2x - 1 + x + 4)

= 2(x + 4)(3x + 3) ← factor out 3

= 6(x + 4)(x + 1)

--------------------------------------------------------------------------

(b)

y = x(x² - 1)³

f(x) = x ⇒ f'(x) = 1

g(x) = (x² - 1)³

g'(x) = 3(x² - 1)² ×
(d)/(dx) (x² - 1) ← chain rule

= 3(x² - 1)² × 2x

= 6x(x² - 1)²

Then


(dy)/(dx) = x. 6x(x² - 1)² + (x² - 1)³. 1

= 6x²(x² - 1)² + (x² - 1)³ ← factor out (x² - 1)²

= (x² - 1)² (6x² + x² - 1)

= (x² - 1)²(7x² - 1)

----------------------------------------------------------------------

(c)

y = (x² - 1)(x³ + 1)

f(x) = x² - 1 ⇒ f'(x) = 2x

g(x) = (x³ + 1) ⇒ g'(x) = 3x²

Then


(dy)/(dx) = (x² - 1). 3x² + (x³ + 1), 2x

= 3x²(x² - 1) + 2x(x³ + 1) ← factor out x

= x[3x(x² - 1) + 2(x³ + 1) ]

= x(3x³ - 3x + 2x³ + 2)

= x(5x³ - 3x + 2) ← distribute

= 5
x^(4) - 3x² + 2x

--------------------------------------------------------------------

(d)

y = 3x³(x² + 4)²

f(x) = 3x³ ⇒ f'(x) = 9x²

g(x) = (x² + 4)²

g'(x) = 2(x² + 4) ×
(d)/(dx)(x² + 4) ← chain rule

= 2(x² + 4) × 2x

= 4x(x² + 4)

Then


(dy)/(dx) = 3x³. 4x(x² + 4) + (x² + 4)². 9x²

= 12
x^(4)(x² + 4) + 9x²(x² + 4)² ← factor out 3x²(x² + 4)

= 3x²(x² + 4) [ 4x² + 3(x² + 4) ]

= 3x²(x² + 4)(4x² + 3x² + 12)

= 3x²(x² + 4)(7x² + 12)

User Damusnet
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories