33.0k views
2 votes
Find the perimeter of the image below:

25.8 units

26.1units

27.5 units

28.6 units

Find the perimeter of the image below: 25.8 units 26.1units 27.5 units 28.6 units-example-1
User Nsndvd
by
8.1k points

1 Answer

5 votes
Start by calculating the length of each side by distance formula:

d = \sqrt{( ({y2 - y1})^(2)+ ( {x2 - x1})^(2)} )

qr =\sqrt{(({y2 - y1})^(2)+({x2 - x1})^(2)} ) \\ \sqrt{( ({5 - 0})^(2) + ( {4 - 2})^(2)} ) \\ = \sqrt{{5}^(2) + {2}^(2)} = √(25 + 4) = √(29)

rs =\sqrt{(({y2 - y1})^(2)+({x2 - x1})^(2)} ) \\ =\sqrt{(({7 - 5})^(2)+({8 - 4})^(2)} ) \\ = \sqrt{ {2}^(2) + {4}^(2)} = √(4 + 16) = √(20) \\ √(4) \: * √(5) = 2 √(5)

st =\sqrt{(({y2 - y1})^(2)+({x2 - x1})^(2)} ) \\=\sqrt{(({4 - 7})^(2)+({6 - 8})^(2)} ) \\=\sqrt{(({ - 3})^(2)+({ - 2})^(2)} ) = √(9 + 4) \\ = √(13)

tu =\sqrt{(({y2 - y1})^(2)+({x2 - x1})^(2)} ) \\qr =\sqrt{(({3 - 4})^(2)+({10 - 6})^(2)} ) \\ \sqrt{( {( - 1)}^(2) + {(4)}^(2) )} = √(1 + 16) \\ = √(17)

uq =\sqrt{(({y2 - y1})^(2)+({x2 - x1})^(2)} ) \\ =\sqrt{(({0 - 3})^(2)+({2 - 10})^(2)} ) \\ = \sqrt{ {( - 3)}^(2) + {( - 8)}^(2) } = √(9 + 64) \\ = √(73)
Now we add up all 5 side lengths to find the perimeter: P = QR + RS + ST + TU + UQ

p = √(29) + 2 √(5) + √(13) + √(17) \\ + √(73) \\ = 5.39 + 4.47 + 3.61 + 4.12 \\ + \: 8.54 = 26.13 \: units
Therefore B) 26.1 units is the closest answer




User Samuel Moriarty
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.