165k views
3 votes
A function is given. Determine the average rate of change of the function between the given values of the variable: f(x)= 4x^2; x=3, x=3+h

1 Answer

4 votes

\bf slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{{{ f(x_2)}}-{{ f(x_1)}}}{{{ x_2}}-{{ x_1}}}\impliedby \begin{array}{llll} average\ rate\\ of\ change \end{array}\\\\ -------------------------------


\bf f(x)= 4x^2 \qquad \begin{cases} x_1=3\\ x_2=3+h \end{cases}\implies \cfrac{f(3+h)-f(3)}{(3+h)~-~(3)} \\\\\\ \cfrac{[4(3+h)^2]~~-~~[4(3)^2]}{\underline{3}+h-\underline{3}}\implies \cfrac{4(3^2+6h+h^2)~~-~~4(9)}{h} \\\\\\ \cfrac{4(9+6h+h^2)~~-~~36}{h}\implies \cfrac{\underline{36}+24h+4h^2~~\underline{-~~36}}{h} \\\\\\ \cfrac{24h+4h^2}{h}\implies \cfrac{\underline{h}(24+4h)}{\underline{h}}\implies 24+4h
User Naruto Biju Mode
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories