232k views
4 votes
If the ratio of areas of two similar polygons is 25:49, what is the ratio of the corresponding side lengths

2 Answers

3 votes

Answer: 5:7

Explanation:

The person above is right

I just did the test

User Jovina
by
8.0k points
0 votes

\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\


\bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\ \stackrel{\textit{ratio of sides}}{\cfrac{s}{s}}=\stackrel{\textit{ratio of the areas}}{\cfrac{√(s^2)}{√(s^2)}}\implies \cfrac{s}{s}=\cfrac{√(25)}{√(49)}\implies \cfrac{s}{s}=\cfrac{5}{7}
User Kasper Ziemianek
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories