232k views
4 votes
If the ratio of areas of two similar polygons is 25:49, what is the ratio of the corresponding side lengths

2 Answers

3 votes

Answer: 5:7

Explanation:

The person above is right

I just did the test

User Jovina
by
8.0k points
0 votes

\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\


\bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\ \stackrel{\textit{ratio of sides}}{\cfrac{s}{s}}=\stackrel{\textit{ratio of the areas}}{\cfrac{√(s^2)}{√(s^2)}}\implies \cfrac{s}{s}=\cfrac{√(25)}{√(49)}\implies \cfrac{s}{s}=\cfrac{5}{7}
User Kasper Ziemianek
by
8.6k points