Answer:
![\displaystyle (d)/(dx)[\log \big( \sec (x^2) \big)] = (2x \tan x^2)/(\ln 10)](https://img.qammunity.org/2022/formulas/mathematics/college/fektelvyaz110bvzwnmgqot3ilxh3ws74e.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vue68srn3fe6bds4idxorm97z7tgwelamw.png)
Explanation:
Step 1: Define
Identify
![\displaystyle y = \log \big( \sec (x^2) \big)](https://img.qammunity.org/2022/formulas/mathematics/college/7pyyvxtjomxy3doxy2oj5r44mazq01mrpn.png)
Step 2: Differentiate
- Logarithmic Differentiation [Derivative Rule - Chain Rule]:
![\displaystyle y' = ((\sec x^2)')/(\ln (10) \sec x^2)](https://img.qammunity.org/2022/formulas/mathematics/college/69tsxxircbtfi9awhdx35v231kx8dm8s1s.png)
- Trigonometric Differentiation [Derivative Rule - Chain Rule]:
![\displaystyle y' = (\sec x^2 \tan x^2 (x^2)')/(\ln (10) \sec x^2)](https://img.qammunity.org/2022/formulas/mathematics/college/ybkapzw726ajt0phfzat8dvdagcrybsc6j.png)
- Simplify:
![\displaystyle y' = (\tan x^2 (x^2)')/(\ln 10)](https://img.qammunity.org/2022/formulas/mathematics/college/7yv9mmuylrc8xuwp8u3unck8yixmxomg3x.png)
- Basic Power Rule:
![\displaystyle y' = (2x \tan x^2)/(\ln 10)](https://img.qammunity.org/2022/formulas/mathematics/college/p45g9r05dxth1f0nonw92b1ilarlxz667z.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation