14.7k views
3 votes
Find the perimeter of Triangle ABC with the verticies A(-5,5) B(3,-5) and C(-5,1

User Szu
by
7.9k points

1 Answer

2 votes

Hello!

Let's calculate a distance between two points using the Pythagorean theorem:


d ^ 2_ {AB} = (x_ {B} - x_ {A}) ^ 2 + (y_ {B} - y_ {A}) ^ 2
Data:
x_B = 3 x_A = -5 y_B = -5 y_A = 5 d_ {AB} =?
Solving: distance from A to B
d^ 2_ {AB} = (x_ {B} - x_ {A}) ^ 2 + (y_ {B} - y_ {A}) ^ 2 d^ 2_ {AB} = (3 - (-5)) ^ 2 + (-5 - 5) ^ 2 d^ 2_ {AB} = (8) ^ 2 + (-10) ^ 2 d^ 2_ {AB} = 64 + 100 d^ 2_ {AB} = 164 d_(AB) = \sqrt {164} d_(AB) = \sqrt {2 ^ 2 * 41} \boxed {d_ {AB} = 2 \sqrt {41}}
Solving:

distance from A to C

d ^ 2_ {AC} = (x_ {C} - x_ {A}) ^ 2 + (y_ {C} - y_ {A}) ^ 2
Data:
x_C = -5 x_A = -5 y_C = 1 y_A = 5 d_ {AC} =?


d^ 2_ {AC} = (x_ {C} - x_ {A}) ^ 2 + (y_ {C} - y_ {A}) ^ 2 d^ 2_ {AC} = (-5 - (-5)) ^ 2 + (1 - 5) ^ 2 d^ 2_ {AC} = (0) ^ 2 + (-4) ^ 2 d^ 2_ {AC} = 0 + 16 d^ 2_ {AC} = 16 d_ {AC} = \sqrt {16} \boxed {d_ {AC} = 4}
Solving:
distance from B to C
d^ 2_ {BC} = (x_ {C} - x_ {B}) ^ 2 + (y_ {C} - y_ {B}) ^ 2
Data:
x_C = -5 x_B = 3 y_C = 1 y_B = -5 d_ {BC} =?


d^ 2_ {BC} = (x_ {C} - x_ {B}) ^ 2 + (y_ {C} - y_ {B}) ^ 2 d^ 2_ {BC} = (-5 - 3) ^ 2 + (1 - (-5)) ^ 2 d^ 2_ {BC} = (-8) ^ 2 + (6) ^ 2 d^ 2_ {BC} = 64 + 36 d^ 2_ {BC} = 100 d_ {BC} = \sqrt {100} \boxed {d_ {BC} = 10}

Now let's calculate the perimeter of the triangle ABC, knowing that the perimeter is the sum of the sides, then:


p = d_ {AB} + d_ {AC} + d_ {BC}


p = 2\sqrt {41} + 4 + 10


\boxed {\boxed {p = 14 + 2 \sqrt {41}}} \end {array}} \qquad \quad \checkmark
User Eli Friedman
by
7.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories