104k views
3 votes
Suppose $1,000 is compounded quarterly for 4 years. what rate is needed to reach a total of $1,500? round to the nearest tenth of a percent.

User Kofemann
by
8.1k points

1 Answer

2 votes
10.3% compounded quarterly. The formula for compound interest is A = P(1+I/N)^TN where A = Amount after interest is granted P = Principle I = Interest rate N = Number of periods per year T = Number of year Since we want to get 1500 with an starting principle of 1000, that means that (1+I/N)^TN has to equal 1.5. And since we know that TN will be 4 * 4 or 16, we know that (1+I/N) has to be the 16th root of 1.5, so let's calculate 10^(log(1.5)/16) = 10^(0.176091259/16) = 10^0.011005704 = 1.025665396 Now write the expression 1 + I/4 = 1.025665396 And solve for I 1 + I/4 = 1.025665396 I/4 = 0.025665396 I = 0.102661586 So the desired interest rate will be 10.3% compounded quarterly.
User Alekx
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories