6.3k views
2 votes
What is the binomial expansion of (2x-3)^5

2 Answers

3 votes

Answer:
32x^5-240x^4+720x^3-1080x^2+810x-243

Explanation:

Binomial expansion of
(a+b)^n= ^nC_0 a^nb^0+^nC_1a^(n-1)b^1+^nC_2a^(n-2)b^2+....+^nC_na^0b^n

In
(2x-3)^5 , a= 2x and b= -3

Similarly, Binomial expansion of
(2x-3)^5


= ^5C_0 (2x)^5(-3)^0+^5C_1(2x)^(4)(-3)^1+^5C_2(2x)^(3)(-3)^2+^5C_3(2x)^(2)(-3)^3+^5C_4(2x)^(1)(-3)^4+^5C_5(2x)^(0)(-3)^5\\\\=(1)(32x^5)+(5)(16x^4)(-3)+((5!)/(2!3!))(8x^3) (9)+((5!)/(2!3!))(4x^2) (-27)+(5)(2x)(81)+(1)(-243)\\\\=32x^5-240x^4+720x^3-1080x^2+810x-243

Hence, Binomial expansion of
(2x-3)^5


=32x^5-240x^4+720x^3-1080x^2+810x-243

User Krunal Rajkotiya
by
7.7k points
4 votes

Answer:

(2x - 3)⁵= 32x⁵ - 240x⁴ + 720x³ - 1080x² + 810x - 243

Explanation:

We need to write the expansion of Binomial (2x - 3)⁵

Here general form of binomial expansion is:

(a + b)ⁿ = ⁿC₀aⁿ + ⁿC₁aⁿ⁻¹b + ⁿC₂aⁿ⁻²b² + ⁿC₃aⁿ⁻³b³ + ... + ⁿCₙbⁿ

(2x - 3)⁵= ⁵C₀(2x)⁵ + ⁵C₁(2x)⁵⁻¹(-3) + ⁵C₂(2x)⁵⁻²(-3)² + ⁵C₃(2x)⁵⁻³(-3)³

+⁵C₄(2x)⁵⁻⁴(-3)⁴ + ⁵C₅(2x)⁵⁻⁵(-3)⁵

(2x - 3)⁵= (32x⁵) + 5(16x⁴)(-3) + 10(8x³)(-3)² + 10(4x²)(- 3)³ + 5(2x)(-3)⁴+(-3)⁵

(2x - 3)⁵= 32x⁵ - 240x⁴ + 720x³ - 1080x² + 810x - 243

That's the final answer.

User Sergii Rudenko
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.