15.6k views
1 vote
Consider the graph of the linear function h(x) = –x + 5. Which could you change to move the graph down 3 units?

User Petek
by
7.6k points

2 Answers

2 votes

Answer:

C

Explanation:

User YardenST
by
7.8k points
3 votes

\bf \qquad \qquad \qquad \qquad \textit{function transformations} \\ \quad \\\\ % left side templates \begin{array}{llll} f(x)=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ y=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ f(x)=&{{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}}(\mathbb{R})^{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}} sin\left({{ B }}x+{{ C}} \right)+{{ D}} \end{array}\\\\ --------------------\\\\


\bf \bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }{{ B}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the y-axis}


\bf \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\ \bullet \textit{ vertical shift by }{{ D}}\\ \left. \qquad \right. if\ {{ D}}\textit{ is negative, downwards}\\\\ \left. \qquad \right. if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }\frac{2\pi }{{{ B}}}

with that template in mind, let's see


\bf h(x)=-x+5\implies h(x)=\stackrel{A}{-1}(\stackrel{B}{1}x\stackrel{C}{+0})\stackrel{D}{+5}

a shift down by 3 units, means a vertical shift downwards, so D needs to drop by 3 units.


\bf h(x)=\stackrel{A}{-1}(\stackrel{B}{1}x\stackrel{C}{+0})\boxed{\stackrel{D}{+5-3}}\implies h(x)=-1(1x+0)+2 \\\\\\ h(x)=-x+2
User Vladimir Samsonov
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories