190k views
4 votes
Integral of cot^4/cot^2x

User Yeritza
by
8.0k points

2 Answers

2 votes

\int (\cot^4x)/(\cot^2x)dx = \int \cot^2x dx

using the identity:
1+\cot^2x = \csc^2x

\int \cot^2x dx = \int( \csc^2x - 1 )dx

=-\cot x-x +c
User Massimo Variolo
by
7.3k points
3 votes

\bf 1+cot^2(\theta)=csc^2(\theta)\implies cot^2(\theta)=csc^2(\theta)-1\\\\ -------------------------------\\\\ \displaystyle \int~\cfrac{cot^4(x)}{cot^2(x)}\cdot dx\implies \int~\cfrac{[cot(x)]^4}{[cot(x)]^2}\cdot dx\implies \int~[cot(x)]^2\cdot dx \\\\\\ \displaystyle \int~cot^2(x)dx\implies \int~[csc^2(x)-1]dx\implies \int~csc^2(x)dx-\int1\cdot dx \\\\\\ -cot(x)-x+C
User Kupson
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories