8.6k views
4 votes
What is the true solution to the equation below?

2 ln e^(ln 2x)-ln e^(ln 10x)=ln 30<br />
x=30<br />
x=75<br />
x150<br />
x=300

User IanH
by
7.9k points

1 Answer

1 vote
yeeee

assuming your equaiton is

2ln(e^(ln(2x)))-ln(e^(ln(10x)))=ln(30)


remember some nice log rules

log_a(b)=c translates to
a^c=b
and

a^(log_a(b))=b
and

xlog_c(b)=log_c(b^x)
and

ln(x)=log_e(x)
and

log(a)-log(b)=log((a)/(b))
and
if
log(a)=log(b) then a=b

so

we can simplify a bit of stuff here

the
e^(ln(2x)) \space\ and \space\ the \space\ e^(ln(10x)) can be simplified to
2x \space\ and \space\ 10x

so we gots now


2ln(2x)-ln(10x)=ln(30)

ln((2x)^2)-ln(10x)=ln(30)

ln(4x^2)-ln(10x)=ln(30)

ln((4x^2)/(10x))=ln(30)
same base so

(4x^2)/(10x)=30

(2x)/(5)=30
times both sides by 5

2x=150
divide both sides by 2

x=75
answer is x=75
User Henry Rodriguez
by
7.8k points

No related questions found