121k views
5 votes
Expand (2x-3y)^4 using Pascal's Triangle. Show work

User Pratnala
by
7.7k points

2 Answers

5 votes

Answer:

16x^4 - 96x^3y + 216x^2y^2 - 216xy^3 + 81y^4

Explanation:

(2x - 3y)^4

Fifth line on a Pascal Triangle

1, 4, 6 4, 1

(1) 2x^4

2^4 = 16

2x^4 = 16x^4

16x^4

(4) 2x^3 (-3y)^1

2^3 = 8

-3^1 = -3

8 times -3 times 4 = -96

-96x^3y

(6) 2x^2 (-3y)^2

2^2 = 4

-3^2 = 9

4 times 9 times 6 = 216

216x^2y^2

(4) 2x^1 (-3y)^3

2^1 = 2

-3^3 = -27

2 times - 27 times 4 = -216

-216xy^3

(1) (-3y)^4

-3^4 = 81

81y^4

16x^4 - 96x^3y + 216x^2y^2 - 216xy^3 + 81y^4

User Rahul Vishwakarma
by
8.8k points
4 votes
(2x+3y)⁴
1) let 2x = a and 3y = b

(a+b)⁴ = a⁴ + a³b + a²b² + ab³ + b⁴
Now let's find the coefficient of each factor using Pascal Triangle

0 | 1
1 | 1 1
2 | 1 2 1
3 | 1 3 3 1
4 | 1 4 6 4 1

0,1,2,3,4,.. represent the exponents of binomials
Since our binomial has a 4th exponents, the coefficients are respectively:

(1)a⁴ + (4)a³b + (6)a²b² + (4)ab³ + (1)b⁴
Now replace a and b by their real values in (1):

2⁴x⁴ +(4)8x³(3y) + (6)(2²x²)(3²y²) + (4)(2x)(3³y³) + (1)(3⁴)(y⁴)

16x⁴ + 96x³y + 216x²y² + 216xy³ + 81y⁴
User Kurt Kline
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories