47.7k views
5 votes
What is the coefficient of xy4 in the expansion of (2x + y)5?

User Gakera
by
8.5k points

2 Answers

5 votes

Answer:

The coefficient of
xy^4 in the expension of
(2x+y)^5 is 10.

Explanation:

Given
(2x+y)^5 , we have to find the coefficient of
xy^4 in the expension of
(2x+y)^5.


\mathrm{Apply\:binomial\:theorem}:\quad \left(a+b\right)^n=\sum _(i=0)^n\binom{n}{i}a^(\left(n-i\right))b^i

Here, a = 2x and b = y ,

Substitute above, we get,


=\sum _(i=0)^5\binom{5}{i}\left(2x\right)^(\left(5-i\right))y^i

Using
\binom{n}{i}=(n!)/(i!\left(n-i\right)!)


\quad \:i=0\quad :\quad (5!)/(0!\left(5-0\right)!)\left(2x\right)^5y^0


\quad \:i=1\quad :\quad (5!)/(1!\left(5-1\right)!)\left(2x\right)^4y^1\\\\\quad \:i=2\quad :\quad (5!)/(2!\left(5-2\right)!)\left(2x\right)^3y^2\\\\\ \quad \:i=3\quad :\quad (5!)/(3!\left(5-3\right)!)\left(2x\right)^2y^3\\\\\quad \:i=4\quad :\quad (5!)/(4!\left(5-4\right)!)\left(2x\right)^1y^4\\\\\quad \:i=5\quad :\quad (5!)/(5!\left(5-5\right)!)\left(2x\right)^0y^5\\\\

Adding all terms, we get,


(2x+y)^5=\quad (5!)/(0!\left(5-0\right)!)\left(2x\right)^5y^0+\quad (5!)/(1!\left(5-1\right)!)\left(2x\right)^4y^1+\quad (5!)/(2!\left(5-2\right)!)\left(2x\right)^3y^2+\quad (5!)/(3!\left(5-3\right)!)\left(2x\right)^2y^3+\quad (5!)/(4!\left(5-4\right)!)\left(2x\right)^1y^4+\quad (5!)/(5!\left(5-5\right)!)\left(2x\right)^0y^5

On evaluating , we get,


(2x+y)^5=32x^5+80x^4y+80x^3y^2+40x^2y^3+10xy^4+y^5

Thus, the coefficient of
xy^4 in the expension of
(2x+y)^5 is 10.


User HenryTK
by
8.1k points
4 votes
to solve the questions we proceed as follows:
(2x+y)^5
=(2x+y)^2(2x+y)^2(2x+y)
=(4x^2+4xy+y^2)(4x^2+4xy+y^2)(2x+y)
=32x^5+80x^4y+80x^3y^2+40x^2y^3+10xy^4+y^5
the coefficient of xy^4 is 10
the answer is 10
User Rafty
by
7.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories