228k views
1 vote
If tan x° = 11 divided by r and cos x° = r divided by s, what is the value of sin x°?

User Koitoer
by
8.4k points

2 Answers

2 votes

\bf sin(\theta)=\cfrac{opposite}{hypotenuse} \qquad cos(\theta)=\cfrac{adjacent}{hypotenuse} \quad % tangent tan(\theta)=\cfrac{opposite}{adjacent}\\\\ -------------------------------\\\\ tan(x^o)=\cfrac{11}{r}\cfrac{\leftarrow opp}{\leftarrow adj}\qquad cos(x^o)=\cfrac{r}{s}\cfrac{\leftarrow adj}{\leftarrow hyp}\\\\\\ \boxed{sin(x^o)=\cfrac{11}{s}\cfrac{\leftarrow opp}{\leftarrow hyp}}
User Slugart
by
7.7k points
3 votes

Answer:


sin x = (11)/(s)

Explanation:


Tan x = (11)/(r)


Cos x = (r)/(s)

Property :
(sin \theta)/(cos \theta)=Tan \theta

So,
(sinx)/(cosx)=Tan x

Substitute the values


(sinx)/( (r)/(s))=(11)/(r)


sinx =(11)/(r) * (r)/(s)


sinx =(11)/(s)

Hence the value of sin x° is
(11)/(s)

User Danmullen
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories