228k views
1 vote
If tan x° = 11 divided by r and cos x° = r divided by s, what is the value of sin x°?

User Koitoer
by
8.4k points

2 Answers

2 votes

\bf sin(\theta)=\cfrac{opposite}{hypotenuse} \qquad cos(\theta)=\cfrac{adjacent}{hypotenuse} \quad % tangent tan(\theta)=\cfrac{opposite}{adjacent}\\\\ -------------------------------\\\\ tan(x^o)=\cfrac{11}{r}\cfrac{\leftarrow opp}{\leftarrow adj}\qquad cos(x^o)=\cfrac{r}{s}\cfrac{\leftarrow adj}{\leftarrow hyp}\\\\\\ \boxed{sin(x^o)=\cfrac{11}{s}\cfrac{\leftarrow opp}{\leftarrow hyp}}
User Slugart
by
7.7k points
3 votes

Answer:


sin x = (11)/(s)

Explanation:


Tan x = (11)/(r)


Cos x = (r)/(s)

Property :
(sin \theta)/(cos \theta)=Tan \theta

So,
(sinx)/(cosx)=Tan x

Substitute the values


(sinx)/( (r)/(s))=(11)/(r)


sinx =(11)/(r) * (r)/(s)


sinx =(11)/(s)

Hence the value of sin x° is
(11)/(s)

User Danmullen
by
8.1k points

No related questions found