218k views
2 votes
Rectangular prisms A and B are similar.

The edge of prism B is 3 times that of prism A. How many times the volume of prism A is the volume of prism B?

User Meanman
by
8.1k points

2 Answers

4 votes
27 times smaller or 1/27 because 3^3 equals to 27.
User Peque
by
9.2k points
4 votes

\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\


\bf \textit{let's say the edge of A is \underline{k} long, then B's is \underline{3k}} \\\\\\ \cfrac{A}{B}\qquad \cfrac{k}{3k}\implies \cfrac{1}{3}\implies \cfrac{s}{s}\qquad thus \\\\\\ \cfrac{A}{B}\qquad \cfrac{1}{3}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\implies \cfrac{1}{3}=\sqrt[3]{\cfrac{s^3}{s^3}}\implies \left( \cfrac{1}{3} \right)^3=\cfrac{s^3}{s^3}\implies \cfrac{1^3}{3^3}=\cfrac{s^3}{s^3} \\\\\\ \cfrac{1}{27}=\cfrac{s^3}{s^3}
User Bviale
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories