218k views
2 votes
Rectangular prisms A and B are similar.

The edge of prism B is 3 times that of prism A. How many times the volume of prism A is the volume of prism B?

User Meanman
by
8.1k points

2 Answers

4 votes
27 times smaller or 1/27 because 3^3 equals to 27.
User Peque
by
9.2k points
4 votes

\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\


\bf \textit{let's say the edge of A is \underline{k} long, then B's is \underline{3k}} \\\\\\ \cfrac{A}{B}\qquad \cfrac{k}{3k}\implies \cfrac{1}{3}\implies \cfrac{s}{s}\qquad thus \\\\\\ \cfrac{A}{B}\qquad \cfrac{1}{3}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\implies \cfrac{1}{3}=\sqrt[3]{\cfrac{s^3}{s^3}}\implies \left( \cfrac{1}{3} \right)^3=\cfrac{s^3}{s^3}\implies \cfrac{1^3}{3^3}=\cfrac{s^3}{s^3} \\\\\\ \cfrac{1}{27}=\cfrac{s^3}{s^3}
User Bviale
by
8.5k points

No related questions found