170k views
2 votes
You have two exponential functions. One function has the formula g(x) = 5 x . The other function has the formula h(x) = 5-x . Which option below gives formula for k(x) = (g - h)(x)?

2 Answers

3 votes

Answer:

The value of
k(x)=(5^(2x)-1)/(5^x)

Explanation:

We have given two function
g(x)=5^x\text{and}h(x)=5^(-x)

We have to find k(x)=(g-h)(x)


k(x)=g(x)-h(x) (1)

We will substitute the values in equation (1) we will get


k(x)=5^x-(5^(-x))

Now, open the parenthesis on right hand side of equation we will get


k(x)=5^x-5^(-x)

Using
x^(-a)=(1)/(x^a)


k(x)=5^x-(1)/(5^x)

Now, taking LCM which is
5^x we will get after simplification


k(x)=(5^(2x)-1)/(5^x)

Hence, the value of
k(x)=(5^(2x)-1)/(5^x)

User Shantese
by
8.2k points
3 votes
given the exponential functions
g(x)= 5^(x) and
h(x)= 5^(-x)


k(x)=(g-h)(x)

k(x)=g(x)-h(x)

k(x)= 5^(x) - 5^(-x)

k(x)= 5^(x) - (1)/( 5^(x) )

k(x)= ( 5^(x) 5^(x) )/( 5^(x) ) - (1)/( 5^(x) )

k(x)= ( 5^(2x) )/( 5^(x) ) - (1)/( 5^(x) )

k(x)= ( 5^(2x)-1 )/( 5^(x) )
User Saurcery
by
8.5k points