98.0k views
5 votes
If the ratio of the sides of two similar prisms is 3:5 and the volume of the first prism is 54, what is the volume of the second prism?

1 Answer

4 votes

\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\


\bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\ \cfrac{smaller}{larger}\qquad \cfrac{s^3}{s^3}=\cfrac{\textit{volume of smaller}}{\textit{volume of larger}}\implies \cfrac{3^3}{5^3}=\cfrac{54}{v} \\\\\\ v=\cfrac{5^3\cdot 54}{3^3}

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories