66.0k views
4 votes
Write the given expression in terms of x and y only.

tan(sin^-1(x)+cos^-1(y))

User Ulilicht
by
8.4k points

1 Answer

3 votes

\tan(a+b)=(\tan a+\tan b)/(1-\tan a\tan b)

\implies\tan(\sin^(-1)x+\cos^(-1)y)=(\tan(\sin^(-1)x)+\tan(\cos^(-1)y))/(1-\tan(\sin^(-1)x)\tan(\cos^(-1)y))

If
\theta=\sin^(-1)x\implies\sin\theta=x, then


\tan(\sin^(-1)x)=\tan\theta=(\sin\theta)/(\cos\theta)

and we know from the Pythagorean identity that
\cos\theta=√(1-\sin^2\theta), so that


\tan(\sin^(-1)x)=\frac x{√(1-x^2)}

Similarly, if we let
\varphi=\cos^(-1)y\implies\cos\varphi=y, we have


\tan(\cos^(-1)y)=\tan\varphi=(\sin\varphi)/(\cos\varphi)=\frac{√(1-y^2)}y

So,


\tan(\sin^(-1)x+\cos^(-1)y)=\frac{\frac x{√(1-x^2)}+\frac{√(1-y^2)}y}{1-(x√(1-y^2))/(y√(1-x^2))}

\tan(\sin^(-1)x+\cos^(-1)y)=(xy+√(1-x^2)√(1-y^2))/(y√(1-x^2)-x√(1-y^2))
User MrPotatoHead
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.