75.8k views
1 vote
Find the coefficient of x^6 in the binomial expression of (2x+3)^9

2 Answers

2 votes
Its 2 bc its in front of the variable
User Lior Iluz
by
8.2k points
5 votes
By the Binomial Theorem:
(a + b)^n = sum(k=0 to n) [C(n, k) * a^(n - k) * b^k].

By letting a = 2x, b = 3, and n = 9
(2x + 3)^9 = sum(k=0 to 9) [C(9, k) * (2x)^(9 - k) * 3^k].
As you can see, the power of x is 9 - k. Since we want the x^6 term:
9 - k = 6 ==> k = 3
Thus, letting k = 3 yields the term containing x^6 to be:
C(9, 6) * (2x)^(9 - 3) * 3^4 = 435456x^6.
.
User Jcalonso
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories