15.3k views
0 votes
Determine the solution set of (x - 4)^2 = 12.

{4 + 2√3, 4 - 2√3}
{4 - 2√3, 4 - 2√3}
{2√3 + 4, 2√3 - 4}

User Teck Wei
by
7.7k points

2 Answers

3 votes

Answer:

x = 4 + 2 sqrt(3) or x = 4 - 2 sqrt(3) thus {4 + 2√3, 4 - 2√3} is your answer!

Explanation:

Solve for x over the real numbers:

(x - 4)^2 = 12

Take the square root of both sides:

x - 4 = 2 sqrt(3) or x - 4 = -2 sqrt(3)

Add 4 to both sides:

x = 4 + 2 sqrt(3) or x - 4 = -2 sqrt(3)

Add 4 to both sides:

Answer: x = 4 + 2 sqrt(3) or x = 4 - 2 sqrt(3)

User Stryba
by
7.9k points
2 votes

Expand (x - 4)^2:


(x - 4) \cdot (x - 4) = (x \cdot x) + (x \cdot -4) + (-4 \cdot x) + (-4 \cdot -4)


x^2 - 4x - 4x + 16 = \boxed{x^2 - 8x + 16 = 12}

Subtract 12 from both sides to get one side to equal 0:


x^2 - 8x + 4 = 0

Find the values of a, b, and c in this quadratic equation:


x^2 \ | \ a = 1


-8x \ | \ b = -8


4 \ | \ c = 4

The quadratic formula is expressed as follows:


\begin{array}{*{20}c} {x = \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}}} & {{\rm{when}}} & {ax^2 + bx + c = 0} \\ \end{array}

Plug in our values into the formula:


\begin{array}{*{20}c} {x = \frac{{ 8 \pm \sqrt {(-8)^2 - 4(1)(4)} }}{{2(1)}}} \end{array}


\begin{array}{*{20}c} {x = \frac{{ 8 \pm \sqrt {64 - 16} }}{{2}}} \end{array}

Simplify the square root:


√(64 - 16) = √(48)

Prime factorize the square root:


√(48) = √(4 \cdot 12) = √(2 \cdot 2 \cdot 3 \cdot 4) = √(2 \cdot 2 \cdot 2 \cdot 2 \cdot 3)

Take any number that is repeated twice in the square root, and move it outside:


√(2 \cdot 2) = 2


√((2 \cdot 2) \cdot (2 \cdot 2) \cdot 3) = 2 \cdot 2 √(3) = \boxed{4 √(3)}


\begin{array}{*{20}c} {x = \frac{{ 8 \pm 4 √(3) }}{{2}}} \end{array}

Solve the plus and minus:


(8 + 4 √(3))/(2) = \boxed{4 + 2√(3)}


(8 - 4 √(3))/(2) = \boxed{4 - 2√(3)}


\boxed{x = 4 + 2√(3) \ \& \ 4 - 2√(3)}

The answer is {4 + 2√3, 4 - 2√3}.

User Gallaxhar
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories