15.3k views
0 votes
Determine the solution set of (x - 4)^2 = 12.

{4 + 2√3, 4 - 2√3}
{4 - 2√3, 4 - 2√3}
{2√3 + 4, 2√3 - 4}

User Teck Wei
by
7.2k points

2 Answers

3 votes

Answer:

x = 4 + 2 sqrt(3) or x = 4 - 2 sqrt(3) thus {4 + 2√3, 4 - 2√3} is your answer!

Explanation:

Solve for x over the real numbers:

(x - 4)^2 = 12

Take the square root of both sides:

x - 4 = 2 sqrt(3) or x - 4 = -2 sqrt(3)

Add 4 to both sides:

x = 4 + 2 sqrt(3) or x - 4 = -2 sqrt(3)

Add 4 to both sides:

Answer: x = 4 + 2 sqrt(3) or x = 4 - 2 sqrt(3)

User Stryba
by
7.1k points
2 votes

Expand (x - 4)^2:


(x - 4) \cdot (x - 4) = (x \cdot x) + (x \cdot -4) + (-4 \cdot x) + (-4 \cdot -4)


x^2 - 4x - 4x + 16 = \boxed{x^2 - 8x + 16 = 12}

Subtract 12 from both sides to get one side to equal 0:


x^2 - 8x + 4 = 0

Find the values of a, b, and c in this quadratic equation:


x^2 \ | \ a = 1


-8x \ | \ b = -8


4 \ | \ c = 4

The quadratic formula is expressed as follows:


\begin{array}{*{20}c} {x = \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}}} & {{\rm{when}}} & {ax^2 + bx + c = 0} \\ \end{array}

Plug in our values into the formula:


\begin{array}{*{20}c} {x = \frac{{ 8 \pm \sqrt {(-8)^2 - 4(1)(4)} }}{{2(1)}}} \end{array}


\begin{array}{*{20}c} {x = \frac{{ 8 \pm \sqrt {64 - 16} }}{{2}}} \end{array}

Simplify the square root:


√(64 - 16) = √(48)

Prime factorize the square root:


√(48) = √(4 \cdot 12) = √(2 \cdot 2 \cdot 3 \cdot 4) = √(2 \cdot 2 \cdot 2 \cdot 2 \cdot 3)

Take any number that is repeated twice in the square root, and move it outside:


√(2 \cdot 2) = 2


√((2 \cdot 2) \cdot (2 \cdot 2) \cdot 3) = 2 \cdot 2 √(3) = \boxed{4 √(3)}


\begin{array}{*{20}c} {x = \frac{{ 8 \pm 4 √(3) }}{{2}}} \end{array}

Solve the plus and minus:


(8 + 4 √(3))/(2) = \boxed{4 + 2√(3)}


(8 - 4 √(3))/(2) = \boxed{4 - 2√(3)}


\boxed{x = 4 + 2√(3) \ \& \ 4 - 2√(3)}

The answer is {4 + 2√3, 4 - 2√3}.

User Gallaxhar
by
7.5k points