146k views
0 votes
What is the angular velocity of a 6–foot pendulum that takes 3 seconds to complete an arc of 14.13 feet? Use 3.14 for π.

2 Answers

4 votes
The circle is 12 foot diameter.
Circumference = (pi)(12) = 37.70 feet
14.13/37.70 = 0.3748
0.3748(360 degrees) = 134.9 degrees
134.9degrees/3sec = 45degrees/second
User Elvis Oliveira
by
8.5k points
0 votes

Answer:

Angular velocity=0.785rad/s

Explanation:

Let us first consider the circumference of pendulum that is:

Circumference=
2{\pi}r, where r is the radius.

Now, it is given that the radius is= 6 foot , therefore

Circumference=
2{*}3.14{*}6

Circumference=
37.68foot

Now, Calculate enough time to produce a whole circular, by causing a proportion with both ratios:

Ratio 1 =
(x)/(37.68) and Ratio 2=
{(3)/(14.13)}

Thus, ratio 1 = ratio 2


(x)/(37.68)={(3)/(14.13)}


x=\frac{3{*}37.68}{14.13}


x=8s

Also, Calculate the angular speed as the
2\piradian (which is the full total angle of the group) divided by enough time.

So the angular speed is =
(2\pi rad)/(8s)=\frac{2{*}3.14 rad}{8s}=0.785rad/s.

User Tohuwawohu
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories