80.5k views
0 votes
In a scale model of a building, 1 ft represents 60 ft. The volume of the scale model is 18 ft3.

What is the volume of the building?
The roof of the scale model has a surface area of 4 ft^2. What is the surface area?

1 Answer

6 votes

\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\


\bf \textit{using the volume ratio}\\\\ \cfrac{model}{building}\qquad \cfrac{1}{60}=\cfrac{\sqrt[3]{18}}{\sqrt[3]{v}}\implies \cfrac{1}{60}=\sqrt[3]{\cfrac{18}{v}}\implies \left( \cfrac{1}{60} \right)^3=\cfrac{18}{v} \\\\\\ \cfrac{1^3}{60^3}=\cfrac{18}{v}\implies v=\cfrac{60^3\cdot 18}{1^3}\\\\ -------------------------------\\\\


\bf \textit{using the area ratio}\\\\ \cfrac{model}{building}\qquad \cfrac{1}{60}=\cfrac{√(4)}{√(a)}\implies \cfrac{1}{60}=\sqrt{\cfrac{4}{a}}\implies \left( \cfrac{1}{60} \right)^2=\cfrac{4}{a} \\\\\\ \cfrac{1^2}{60^2}=\cfrac{4}{a}\implies a=\cfrac{60^2\cdot 4}{1^2}
User Ken Barber
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories