220k views
5 votes
Please solve!!!

cube root 64(cos330+isin330)

show work please

2 Answers

2 votes

\bf \sqrt[{{ n}}]{z}=\sqrt[{{ n}}]{r}\left[ cos\left( \frac{\theta+2\pi k}{{{ n}}} \right) +i\ sin\left( \frac{\theta+2\pi k}{{{ n}}} \right)\right]\quad k\ roots\\\\ -------------------------------\\\\


\bf \sqrt[3]{64}[cos(330^o)+i\ sin(330^o)] \\\\\\ \sqrt[3]{64}\left[cos\left( (330+360(0))/(3) \right) + i\ sin\left( (330+360(0))/(3) \right) \right] \\\\\\ 4[cos(110^o)+i\ sin(110^o)]\implies 4(-0.34202014)+4(0.9396926) \\\\\\ \approx -1.37 + 3.76i\impliedby \textit{first root, k = 0}\\\\ -------------------------------\\\\



\bf \sqrt[3]{64}[cos(330^o)+i\ sin(330^o)] \\\\\\ \sqrt[3]{64}\left[cos\left( (330+360(1))/(3) \right) + i\ sin\left( (330+360(1))/(3) \right) \right] \\\\\\ 4[cos(230^o)+i\ sin(230^o)]\implies 4(-0.6427876)+4(-0.7660444) \\\\\\ \approx -2.57 -3.06i\impliedby \textit{second root, k = 1}\\\\ -------------------------------\\\\



\bf \sqrt[3]{64}[cos(330^o)+i\ sin(330^o)] \\\\\\ \sqrt[3]{64}\left[cos\left( (330+360(2))/(3) \right) + i\ sin\left( (330+360(2))/(3) \right) \right] \\\\\\ 4[cos(350^o)+i\ sin(350^o)]\implies 4(0.98480775)+4(-0.1736481) \\\\\\ \approx 3.94 -0.695i\impliedby \textit{third root, k = 2}
User Jens Peters
by
8.2k points
2 votes
hello:
cube root 64(cos330+isin330) iz the complex number with :
z^3 = 64(cos330+isin330) ...(1)
let: z = r(cos(
θ) +isin(θ))
so : z^3 = r^3 (
cos(3θ) +isin(3θ))...(2) ( by moivre)
by(1) and (2) :
r^3 =64 = 4^3 and 3θ =11π/6 +2kπ.... k=0 , 1 , 2
r =4 and θ = 11π/18 +2kπ/3 ..... k=0 , 1 , 2
coclusion : 3 cube root ....calculate if k = 0 , 1 , 2
User Mark Ortiz
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories